ELECTROCHEMICAL UTILIZATION OF AN EXCESS LITHIUM SULFIDE IN SOLID LITHIUM-ION ELECTRODES

Authors

  • Karthik Bujuru

DOI:

https://doi.org/10.53555/ephijse.v7i4.208

Keywords:

Solid state batteries, Lithium-ion batteries, electrochemical utilization, composite electrodes, n-LiTiS2

Abstract

Solid state lithium-ion batteries with most commonly available electrodes suffer from poor ionic conductivity of the active material and its poor inter particle contact with the solid glass-ceramic electrolyte. While this can be addressed by interlacing the active material like n-LiTiS2 with glass-ceramic binary solid-state electrolyte like Li2S-P2S5, this often reduces the loading of active material in the composite electrode, and thus a reduction in specific capacity of the cell. This article explores the concept of electrochemical utilization of excess Li2S in the electrode by cycling the cell at high temperatures, and thus activating the Li2S and creation of parallel S/ Li2S conversion chemistry along with TiS2/LiTiS2 chemistry and thus increasing the specific energy density of the solid-state batteries without changing the active material loading in the composite electrode.

References

. N. Kamaya et al., “A lithium superionic conductor,” Nat Mater, vol. 10, no. 9, pp. 682–686, Sep. 2011, doi: 10.1038/nmat3066.

. M. Nagao, A. Hayashi, and M. Tatsumisago, “Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte,” Electrochim Acta, vol. 56, no. 17, pp. 6055–6059, Jul. 2011,

doi: 10.1016/j.electacta.2011.04.084.

. K. TAKADA, “Solid state batteries with sulfide-based solid electrolytes,” Solid State Ion, vol. 172, no. 1–4, pp. 25–30, Aug. 2004, doi: 10.1016/j.ssi.2004.02.027.

. K. IWAMOTO, N. AOTANI, K. TAKADA, and S. KONDO, “Rechargeable solid-state battery with lithium conductive glass, Li3PO4Li2SSiS2,” Solid State Ion, vol. 70–71, pp. 658–661, May 1994, doi: 10.1016/0167-2738(94)90389-1.

. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, “Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass–ceramic electrolytes,” J Power Sources, vol. 146, no. 1–2, pp. 711–714, Aug. 2005, doi: 10.1016/j.jpowsour.2005.03.161.

. J. E. Trevey, C. R. Stoldt, and S.-H. Lee, “High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries,” J Electrochem Soc, vol. 158, no. 12, p. A1282, 2011, doi: 10.1149/2.017112jes.

. N. Machida, H. Maeda, H. Peng, and T. Shigematsu, “All-Solid-State Lithium Battery with LiCo[sub-0.3]Ni[sub 0.7]O[sub 2] Fine Powder as Cathode Materials with an Amorphous Sulfide Electrolyte,” J Electrochem Soc, vol. 149, no. 6, p. A688, 2002, doi: 10.1149/1.1471540.

. A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, and M. Tatsumisago, “All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material,” J Power Sources, vol. 183, no. 1, pp. 422–426, Aug. 2008, doi: 10.1016/j.jpowsour.2008.05.031.

. Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, and Y. Cui, “New Nanostructured Li 2 S/Silicon Rechargeable Battery with High Specific Energy,” Nano Lett, vol. 10, no. 4, pp. 1486–1491, Apr. 2010, doi: 10.1021/nl100504q.

. T. A. Yersak, Y. Yan, C. Stoldt, and S.-H. Lee, “Ambient Temperature and Pressure Mechanochemical Preparation of Nano-LiTiS2,” ECS Electrochemistry Letters, vol. 1, no. 1, pp. A21–A23, Jan. 2012, doi: 10.1149/2.014201eel.

. J. Trevey, J. S. Jang, Y. S. Jung, C. R. Stoldt, and S.-H. Lee, “Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries,” Electrochem commun, vol. 11, no. 9, pp. 1830–1833, Sep. 2009, doi: 10.1016/j.elecom.2009.07.028.

Downloads

Published

2021-11-28