IDENTIFICATION OF SIGNATURE USING ZONING METHODS AND SUPPORT VECTOR MACHINE

Authors

  • Yuli Christyono Electrical Engineering Deparment, Diponegoro UniversityTembalangSemarang 50275, Indonesia
  • Ajub Ajulian Zahra Electrical Engineering Deparment, Diponegoro UniversityTembalangSemarang 50275, Indonesia
  • Bambang Winardi Electrical Engineering Deparment, Diponegoro UniversityTembalangSemarang 50275, Indonesia
  • Agung Warsito Electrical Engineering Deparment, Diponegoro UniversityTembalangSemarang 50275, Indonesia
  • Tejo Sukmadi Electrical Engineering Deparment, Diponegoro UniversityTembalangSemarang 50275, Indonesia
  • Riska Aristantya Electrical Engineering Deparment, Diponegoro UniversityTembalangSemarang 50275, Indonesia

DOI:

https://doi.org/10.53555/eijse.v4i4.150

Keywords:

signature identification, zoning method, SVM

Abstract

Identification of signatures is the process of identifying and defining a person’s signature. Identification of signatures including biometics that use natural human behavior. Identification of signatures can be used in security areas such as money withdrawal permits, check validation, credit card transactions and more.  During this signature identification is done manually. Difficulty in this way, if the signature to be identified is large, the examiner will experience fatigue. To simplify it needs to be developed to create a computerized signature identification system. In this research, the development of this signature identification is done using the method of zoning and Support Vector Machine (SVM) classification. Based on the tests that have been done, normal test data test resulted in recognition accuracy of 95.31%. In testing the test data with disturbance obtained accuracy of 20.31%.  While  the  testing  of artificial  signatures  generated  an  accuracy  of  70%.  In  addition  to  the  registered  signature image  pattern,  there  are  also  signature  images  that  are  not  registered  in  the  database.  The accuracy obtained in this test is 100%.

References

. R. Abbas, “A Prototype System for Off-Line Signature Verification Using Multi layered Feedforward Neural,” 1994.

. O. D. Trier, A. K. Jain, and T. Taxt, “Feature Extraction Methods for Character Recognition,” Univ. Oslo, vol. 29, no. 4, pp. 641–662, 1996.

. N. Amelia, “Introduction to Hijaiyah Pattern Using Support Vector Machine(SVM),” 2016.

. S. V Rajashekararadhya, “Efficient Zone Based Feature Extration Algorithm for Handwritten Numeral Recognition of Four Popular South Indian Scripts,” J. Theor. Appl. Inf. Technol., vol. 4, no. 12, pp. 1171–1181, 2008.

. N. Putra, “Value Enhancement of Propagation Network Features Back in the Introduction of Handwriting Numbers Using Zoning and Diagonal Based Feature Extraction,” Sumatera Utara University, 2012.

. I. M. G. Sunarya, “Menggunakan Metode Jaringan Syaraf Tiruan Model Perceptron,” Univ. Pendidik. dan Ganesha, vol. 7, no. 1, pp. 700–710, 2013.

. A. Jariah, “Introduction to Patterns of Signatures UsingMoment Invariant and Radial Basis Function (RBF)Neural Network,” Yogyakarta University, pp. 85–92, 2011.

. D. K. W. Buana, “Signature Identification using Back propagation Neural Network,” pp. 1–8.

. Zaitun, Warsito, “System for Identifying and Recognizing Signs of the Image Pattern Using Artificial Neural Network Systems with Back propagation Method,” vol. 3, no. 2, pp. 93–101, 2015.

. Z. B. Fiqhi, R. R. Isnanto, and M. Somantri, “Identification of Signatures Using Principal Component Analysis and Artificial Neural Network -,” pp. 1–8, 2013.

. A. Wibowo, Wirawan, Y. K. Suprapto, “Signature Verification and Identification Offline using Wavelet dan Learning Vector Quantization,” Inst. Teknol. Sepuluh Nop., vol. 5, no. 1, pp. 649–655, 2014.

. T. Fotak, P. Koruga, and M. Ba, “Online Handwritten Signature Identication : The Basics,” 2011.

Downloads

Published

2018-12-27