SCATTERING MECHANISM MODELS IN POLARIMETRIC SAR: A BRIEF REVIEW

Authors

  • Satyawan Nanabhau Arsul
  • Pradnya R. Maheshmalkar

DOI:

https://doi.org/10.53555/ephijse.v11i1.290

Keywords:

PolSAR, Scattering, Decomposition, Urban, Forest

Abstract

Polarimetric Synthetic Aperture Radar (PolSAR) has emerged as a powerful tool in remote sensing due to its ability to capture detailed scattering information under all-weather, day-and-night conditions. Understanding scattering mechanisms is essential for accurate interpretation of PolSAR data across various applications, including urban area classification, forest canopy analysis, and environmental monitoring. This review provides a comprehensive overview of key scattering mechanism models, focusing on the Freeman-Durden Three-Component Model, Cloude-Pottier Decomposition, and Yamaguchi Four-Component Model. Each model’s theoretical basis, strengths, limitations, and real-world applications are critically discussed. The review highlights common challenges such as ambiguity in oriented urban structures and volume scattering overestimation. Furthermore, the potential of integrating advanced computational techniques, including artificial intelligence (AI) and machine learning (ML), to improve model robustness is emphasized. This work aims to serve as a foundational reference for future research on enhancing scattering mechanism models in PolSAR data analysis.

Author Biographies

Satyawan Nanabhau Arsul

Department of Physics, Mrs. K. S. K. College of Arts, Science & Commerce

Pradnya R. Maheshmalkar

Department of Physics, Mrs. K. S. K. College of Arts, Science & Commerce

References

X. Shi, S. Fu, J. Chen, F. Wang, and F. Xu, “Object-Level Semantic Segmentation on the High-Resolution Gaofen-3 FUSAR-Map Dataset,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 14, 2021, doi: 10.1109/JSTARS.2021.3063797.

C. Tu et al., “Synergetic classification of coastal wetlands over the yellow river delta with gf-3 full-polarization sar and zhuhai-1 ohs hyperspectral remote sensing,” Remote Sens (Basel), vol. 13, no. 21, 2021, doi: 10.3390/rs13214444.

R. Garg, A. Kumar, N. Bansal, M. Prateek, and S. Kumar, “Semantic segmentation of PolSAR image data using advanced deep learning model,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-94422-y.

X. Zhang, J. Xu, Y. Chen, K. Xu, and D. Wang, “Coastal wetland classification with gf-3 polarimetric sar imagery by using object-oriented random forest algorithm,” Sensors, vol. 21, no. 10, 2021, doi: 10.3390/s21103395.

J. Geng, R. Wang, and W. Jiang, “Polarimetric SAR Image Classification Based on Feature Enhanced Superpixel Hypergraph Neural Network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, 2022, doi: 10.1109/TGRS.2022.3220409.

G. Gao, C. Zhang, L. Zhang, and D. Duan, “Scattering Characteristic-Aware Fully Polarized SAR Ship Detection Network Based on a Four-Component Decomposition Model,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, 2023, doi: 10.1109/TGRS.2023.3336300.

X. Chen, Y. Zheng, J. Peng, and M. Floris, “Monitoring river water level using multiple bounces of bridges in SAR images,” Advances in Space Research, vol. 68, no. 10, 2021, doi: 10.1016/j.asr.2021.08.006.

Ş. Demirci and C. Özdemir, “An investigation of the performances of polarimetric target decompositions using GB-SAR imaging,” International Journal of Engineering and Geosciences, vol. 6, no. 1, 2021, doi: 10.26833/ijeg.665175.

L. Zhang, X. Lv, and R. Wang, “Soil Moisture Estimation Based on Polarimetric Decomposition and Quantile Regression Forests,” Remote Sens (Basel), vol. 14, no. 17, 2022, doi: 10.3390/rs14174183.

Y. Wang, S. Fang, L. Zhao, and X. Huang, “Estimation of maize plant height in North China by means of backscattering coefficient and depolarization parameters using Sentinel-1 dual-pol SAR data,” Int J Remote Sens, vol. 43, no. 6, 2022, doi: 10.1080/01431161.2022.2054294.

W. Yu and T. Tao, “Scenario Simulation for the Urban Carrying Capacity Based on System Dynamics Model in Shanghai, China,” Sustainability (Switzerland), vol. 14, no. 19, 2022, doi: 10.3390/su141912910.

M. Maranesi, M. Picchiani, … C. C.-E. G., and undefined 2021, “MAFIS-Multiple Actors Forest Information System: EO+ AI+ ODC for scalable forest monitoring services,” ui.adsabs.harvard.edu, Accessed: Mar. 20, 2025. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2021EGUGA..2316539M/abstract

A. I. Semyachkov and K. Al Semyachkov, “Digital model of groundwater technogenesis as an element of sustainable development of the urban environment,” Sustainable Development of Mountain Territories, vol. 14, no. 3, 2022, doi: 10.21177/1998-4502-2022-14-3-362-369.

Y. Choi, D. Yang, S. Han, and J. Han, “Change Target Extraction Based on Scale-Adaptive Difference Image and Morphology Filter for KOMPSAT-5,” Remote Sens (Basel), vol. 14, no. 2, 2022, doi: 10.3390/rs14020245.

N. K. Acwin Dwijendra et al., “Investigating the Effects of Air Pollution on Plant Species Resistance in Urban Areas,” Health Scope, vol. 12, no. 1, 2023, doi: 10.5812/jhealthscope-129786.

K. Inderkumar, A. Kumar, and R. K. Panigrahi, “Three-Component Decomposition of Hybrid-Polsar Data With Volume Scattering Models,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3106151.

W. Hou, F. Zhao, X. Liu, and R. Wang, “General Two-Stage Model-Based Three-Component Hybrid Compact Polarimetric SAR Decomposition Method,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 14, 2021, doi: 10.1109/JSTARS.2021.3065431.

Y. Wang et al., “An Improved Urban Area Extraction Method for PolSAR Data Using Eigenvalues and Optimal Roll-Invariant Features,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 17, 2024, doi: 10.1109/JSTARS.2024.3372504.

M. N. S. Ramya and S. Kumar, “PolInSAR coherence-based decomposition modeling for scattering characterization: A case study in Uttarakhand, India,” Science of Remote Sensing, vol. 3, 2021, doi: 10.1016/j.srs.2021.100020.

T. L. Ainsworth, Y. Wang, and J. Sen Lee, “Model-Based Polarimetric SAR Decomposition: An L1Regularization Approach,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, 2022, doi: 10.1109/TGRS.2021.3083511.

Q. Yin, J. Li, Y. Zhou, D. Xiang, and F. Zhang, “Adaptive weighted learning for vegetation contribution in soil moisture inversion using PolSAR data,” Int J Remote Sens, vol. 43, no. 9, 2022, doi: 10.1080/01431161.2022.2088259.

L. Chen et al., “Improved Object-Based Estimation of Forest Aboveground Biomass by Integrating LiDAR Data from GEDI and ICESat-2 with Multi-Sensor Images in a Heterogeneous Mountainous Region,” Remote Sens (Basel), vol. 14, no. 12, 2022, doi: 10.3390/rs14122743.

H. Zhu, B. Zhang, W. Song, Q. Xie, X. Chang, and R. Zhao, “Forest Canopy Height Estimation by Integrating Structural Equation Modeling and Multiple Weighted Regression,” Forests, vol. 15, no. 2, 2024, doi: 10.3390/f15020369.

T. Weiß, T. Ramsauer, T. Jagdhuber, A. Löw, and P. Marzahn, “Sentinel-1 backscatter analysis and radiative transfer modeling of dense winter wheat time series,” Remote Sens (Basel), vol. 13, no. 12, 2021, doi: 10.3390/rs13122320.

X. Jiao, H. McNairn, and L. Dingle Robertson, “Monitoring crop growth using a canopy structure dynamic model and time series of synthetic aperture radar (SAR) data,” Int J Remote Sens, vol. 42, no. 17, 2021, doi: 10.1080/01431161.2021.1938739.

Z. Ye, J. Long, T. Zhang, B. Lin, H. L.- Plants, and undefined 2024, “L-Band Synthetic Aperture Radar and Its Application for Forest Parameter Estimation, 1972 to 2024: A Review,” mdpi.comZ Ye, J Long, T Zhang, B Lin, H LinPlants, 2024•mdpi.com, Accessed: Mar. 20, 2025. [Online]. Available: https://www.mdpi.com/2223-7747/13/17/2511

C. Kobayashi, H. Yamada, … R. S.-I. S. on, and undefined 2024, “Orientation angle estimation of buildings and streets in urban areas using PolSAR data,” ieeexplore.ieee.orgC Kobayashi, H Yamada, R Sato2024 International Symposium on Antennas and Propagation (ISAP), 2024•ieeexplore.ieee.org, Accessed: Mar. 20, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10846314/

H. Qiao et al., “A Novel Method for Snow Depth Retrieval Using Improved Dense Medium RVoG Model,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 17, 2024, doi: 10.1109/JSTARS.2023.3342993.

A. Levitsky, S. A. Schneider, E. Rabkin, M. F. Toney, and G. L. Frey, “Bridging the thermodynamics and kinetics of temperature-induced morphology evolution in polymer/fullerene organic solar cell bulk heterojunction,” Mater Horiz, vol. 8, no. 4, 2021, doi: 10.1039/d0mh01805h.

T. Wang, Z. Suo, J. Ti, B. Yan, H. Xiang, and J. Xi, “A Unitary Transformation Extension of PolSAR Four-Component Target Decomposition,” Remote Sens (Basel), vol. 16, no. 6, 2024, doi: 10.3390/rs16061067.

T. Zhang et al., “PolSAR Ship Detection Using the Superpixel-Based Neighborhood Polarimetric Covariance Matrices,” IEEE Geoscience and Remote Sensing Letters, vol. 19, 2022, doi: 10.1109/LGRS.2021.3090368.

A. A. Kuznetsov, N. Chrysaphi, E. P. Kontar, and G. Motorina, “Radio Echo in the Turbulent Corona and Simulations of Solar Drift-pair Radio Bursts,” Astrophys J, vol. 898, no. 2, 2020, doi: 10.3847/1538-4357/aba04a.

Q. Xie et al., “Crop Classification Based on the Physically Constrained General Model-Based Decomposition Using Multi-Temporal RADARSAT-2 Data,” Remote Sens (Basel), vol. 14, no. 11, 2022, doi: 10.3390/rs14112668.

X. Shi and F. Xu, “LAND COVER SEMANTIC SEGMENTATION OF HIGH-RESOLUTION GAOFEN-3 SAR IMAGE,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2021. doi: 10.1109/IGARSS47720.2021.9553435.

Y. Hu, Y. Nie, Z. Liu, G. Wu, and W. Fan, “Improving the Potential of Coniferous Forest Aboveground Biomass Estimation by Integrating C- and L-Band SAR Data with Feature Selection and Non-Parametric Model,” Remote Sens (Basel), vol. 15, no. 17, 2023, doi: 10.3390/rs15174194.

P. Kacic, F. Thonfeld, U. Gessner, and C. Kuenzer, “Forest Structure Characterization in Germany: Novel Products and Analysis Based on GEDI, Sentinel-1 and Sentinel-2 Data,” Remote Sens (Basel), vol. 15, no. 8, 2023, doi: 10.3390/rs15081969.

A. Verhegghen, K. Kuzelova, V. Syrris, H. Eva, and F. Achard, “Mapping Canopy Cover in African Dry Forests from the Combined Use of Sentinel-1 and Sentinel-2 Data: Application to Tanzania for the Year 2018,” Remote Sens (Basel), vol. 14, no. 6, 2022, doi: 10.3390/rs14061522.

S. A. Samadi Todar, S. Attarchi, and K. Osati, “Investigation the seasonality effect on impervious surface detection from Sentinel-1 and Sentinel-2 images using Google Earth engine,” Advances in Space Research, vol. 68, no. 3, 2021, doi: 10.1016/j.asr.2021.03.039.

A. P. Nicolau, A. Flores-Anderson, R. Griffin, K. Herndon, and F. J. Meyer, “Assessing SAR C-band data to effectively distinguish modified land uses in a heavily disturbed Amazon forest,” International Journal of Applied Earth Observation and Geoinformation, vol. 94, 2021, doi: 10.1016/j.jag.2020.102214.

J. Adrian, V. Sagan, and M. Maimaitijiang, “Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 175, 2021, doi: 10.1016/j.isprsjprs.2021.02.018.

S. Kraatz et al., “Comparison between dense l-band and c-band synthetic aperture radar (Sar) time series for crop area mapping over a nisar calibration-validation site,” Agronomy, vol. 11, no. 2, 2021, doi: 10.3390/agronomy11020273.

B. Hu et al., “Improving urban land cover classification with combined use of sentinel-2 and sentinel-1 imagery,” ISPRS Int J Geoinf, vol. 10, no. 8, 2021, doi: 10.3390/ijgi10080533.

G. De Luca, J. M. N. Silva, S. Di Fazio, and G. Modica, “Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region,” Eur J Remote Sens, vol. 55, no. 1, 2022, doi: 10.1080/22797254.2021.2018667.

T. Fatoyinbo et al., “The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions,” Remote Sens Environ, vol. 264, 2021, doi: 10.1016/j.rse.2021.112533.

M. Santoro, O. Cartus, and J. E. S. Fransson, “Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden,” Remote Sens Environ, vol. 253, 2021, doi: 10.1016/j.rse.2020.112235.

E. Blomberg, L. M. H. Ulander, S. Tebaldini, and L. Ferro-Famil, “Evaluating P-Band TomoSAR for Biomass Retrieval in Boreal Forest,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 5, 2021, doi: 10.1109/TGRS.2020.3020775.

M. Banic, L. Zatti, M. Liscidini, and J. E. Sipe, “Two strategies for modeling nonlinear optics in lossy integrated photonic structures,” Phys Rev A (Coll Park), vol. 106, no. 4, 2022, doi: 10.1103/PhysRevA.106.043707.

C. Torres de Almeida et al., “Canopy Height Mapping by Sentinel 1 and 2 Satellite Images, Airborne LiDAR Data, and Machine Learning,” Remote Sens (Basel), vol. 14, no. 16, 2022, doi: 10.3390/rs14164112.

X. Yan, J. Li, A. R. Smith, D. Yang, T. Ma, and Y. Su, “Rapid Land Cover Classification Using a 36-Year Time Series of Multi-Source Remote Sensing Data,” Land (Basel), vol. 12, no. 12, 2023, doi: 10.3390/land12122149.

T. T. Aragaw and G. Gnanachandrasamy, “Evaluation of groundwater quality for drinking and irrigation purposes using GIS-based water quality index in urban area of Abaya-Chemo sub-basin of Great Rift Valley, Ethiopia,” Appl Water Sci, vol. 11, no. 9, 2021, doi: 10.1007/s13201-021-01482-6.

Downloads

Published

2025-03-26