A THEORETICAL FRAMEWORK FOR CLOUD AND DATA ANALYTICS CONVERGENCE IN SCALABLE MANAGEMENT INFORMATION SYSTEMS
DOI:
https://doi.org/10.53555/xt7g0888Keywords:
cloud computing, data analytics, management information systems, scalability, higher education, theoretical framework, conceptual modelAbstract
With the growing use of data-intensive environments in the operations of an organizations and the higher education institutions, Management Information Systems (MIS) must shift away from the known-data-processing-environment to the higher analytical support and timely decision-making environment. Despite the fact that data analytics and cloud computing are recognized as crucial agents of organizational intelligence and scalability, a large portion of the literature currently in publication views the two technologies as distinct disciplines. These has been the focus on elaborating on how cloud and analytics capabilities interact in systematic relations to serve scalable MIS and this is specifically in complex and multidisciplinary academic settings.
The paper proposes a theoretically grounded conceptual framework that clarifies how data analytics and cloud computing can be integrated to provides a platform for scalable MIS. The study incorporates cloud computing, data analytics, distributed system, and information system literature using a theory synthesis approach. It is designed based on three construct domains, including cloud infrastructure elements, data analytics capabilities and MIS scalability requirements and operationalized by five convergence mechanisms: dynamic resource orchestration, analytics-support scalability, bidirectional feedback loops, data-compute co-location, and adaptive optimization. Seven theoretical propositions are developed to inform future empirical research.
The research work also adds to MIS theory by explaining structural functional relationship between cloud infrastructure and analytics capabilities in scalable system design. Furthermore, it provides viable guidelines to the institutions that seek to achieve the development of analytics-enabled MIS designs that can withstand the increasing levels of data, changing decision needs, and available resource limitations.
References
1.Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: A systematic review and agenda for future research. Electronic Markets, 26(2), 173-194. https://doi.org/10.1007/s12525-016-0219-0
2.Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). rmbru, 53(4), 50-58. https://doi.org/10.1145/1721654.1721672
3.Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79-80, 3-15. https://doi.org/10.1016/j.jpdc.2014.08.003
4.Bahrami, M., & Singhal, M. (2015). The role of cloud computing architecture in big data. In Information Granularity, Big Data, and Computational Intelligence (pp. 275-295). Springer. https://doi.org/10.1007/978-3-319-08254-7_13
5.Benlian, A., & Hess, T. (2011). Opportunities and risks of software-as-a-service: Findings from a survey of IT executives. Decision Support Systems, 52(1), 232-246. https://doi.org/10.1016/j.dss.2011.07.007
6.Benlian, A., Hess, T., & Buxmann, P. (2018). Drivers of SaaS-adoption – An examination of different application types. Business & Information Systems Engineering, 51(5), 357-369. https://doi.org/10.1007/s12599-009-0068-x
7.Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: An empirical investigation. MIS Quarterly, 24(1), 169-196. https://doi.org/10.2307/3250983
8.Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471-482. https://doi.org/10.25300/MISQ/2013/37.2.3
9.Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-616. https://doi.org/10.1016/j.future.2008.12.001
10.Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
11.Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171-209. https://doi.org/10.1007/s11036-013-0489-0
12.Davenport, T. H. (2013). Analytics at work: Smarter decisions, better results. Harvard Business Review Press.
13.Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business School Press.
14.DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. https://doi.org/10.1080/07421222.2003.11045748
15.Demirkan, H., & Delen, D. (2013). Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems, 55(1), 412-421. https://doi.org/10.1016/j.dss.2012.05.048
16.Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: Issues and challenges. In 2010 24th IEEE International Conference on Advanced Information Networking and Applications (pp. 27-33). IEEE. https://doi.org/10.1109/AINA.2010.187
17.Erl, T., Puttini, R., & Mahmood, Z. (2013). Cloud computing: Concepts, technology & architecture. Prentice Hall. http://doi.acm.org/10.1145/2632434.2632462
18.Garrison, G., Kim, S., & Wakefield, R. L. (2012). Success factors for deploying cloud computing. Communications of the ACM, 58(9), 70-78. https://doi.org/10.1145/23300667.2330685
19.Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3), 611-642. https://doi.org/10.2307/25148742
20.Gupta, P., Seetharaman, A., & Raj, J. R. (2013). The usage and adoption of cloud computing by small and medium businesses. International Journal of Information Management, 33(5), 861-874. https://doi.org/10.1016/j.ijinfomgt.2013.07.001
21.Gupta, S., Qian, X., Bhujabal, B., & Kadam, S. (2012). Cloud computing and big data analytics: What is new from cloud perspective? In Big Data Analytics (pp. 1-23). Springer. https://doi.org/10.1007/978-981-15-0094-7_1
22.Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of "big data" on cloud computing: Review and open research issues. Information Systems, 47, 98-115. https://doi.org/10.1016/j.is.2014.07.006
23.Hill, M. D. (1990). What is scalability? ACM SIGARCH Computer Architecture News, 18(4), 18-21. https://doi.org/10.1145/121973.121975
24.Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics: A technology tutorial. IEEE Access, 2, 652-687. https://doi.org/10.1109/ACCESS.2014.2332453
25.Jaakkola, E. (2020). Designing conceptual articles: Four approaches. AMS Review, 10, 18-26. https://doi.org/10.1007/s13162-020-00161-0
26.Khatri, V., & Brown, C. V. (2010). Designing data governance. Communications of the ACM, 53(1), 148-152. https://doi.org/10.1145/1629175.1629210
27.Kiron, D., Prentice, P. K., & Ferguson, R. B. (2014). The analytics mandate. MIT Sloan Management Review, 55(4), 1-25.
28.Laudon, K. C., & Laudon, J. P. (2021). Management information systems: Managing the digital firm (17th ed.). Pearson.
29.LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21-32.
30.Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., & Ghalsasi, A. (2011). Cloud computing — The business perspective. Decision Support Systems, 51(1), 176-189. https://doi.org/10.1016/j.dss.2010.12.006
31.Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (NIST Special Publication 800-145). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-145
32.Mikalef, P., Pappas, I. O., Krogstie, J., & Giannakos, M. (2019). Big data analytics capabilities: A systematic literature review and research agenda. Information Systems and e-Business Management, 16(3), 547-578. https://doi.org/10.1007/s10257-017-0362-y
33.Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497-510. https://doi.org/10.1016/j.im.2014.03.006
34.Ross, J. W., Beath, C. M., & Quaadgras, A. (2016). You may not need big data after all. Harvard Business Review, 90(12), 90-98.
35.Rowe, F. (2014). What literature review is not: Diversity, boundaries and recommendations. European Journal of Information Systems, 23(3), 241-255. https://doi.org/10.1057/ejis.2014.7
36.Russom, P. (2017). Big data analytics (TDWI Best Practices Report). The Data Warehousing Institute.
37.Schneider, S., & Sunyaev, A. (2016). Determinant factors of cloud-sourcing decisions: Reflecting on the IT outsourcing literature in the era of cloud computing. Journal of Information Technology, 31(1), 1-31. https://doi.org/10.1057/jit.2014.25
38.Seddon, P. B., Constantinidis, D., Tamm, T., & Dod, H. (2017). How does business analytics contribute to business value? Information Systems Journal, 27(3), 237-269. https://doi.org/10.1111/isj.12101
39.Sharma, R., Mithas, S., & Kankanhalli, A. (2014). Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433-441. https://doi.org/10.1057/ejis.2014.17
40.Sharma, S., Al-Badi, A., Govindaluri, S. M., & Al-Kharusi, M. H. (2021). Predicting motivators of cloud computing adoption: A developing country perspective. Computers in Human Behavior, 62, 61-69. https://doi.org/10.1016/j.chb.2016.03.073
41.Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263-286. https://doi.org/10.1016/j.jbusres.2016.08.001
42.Sun, Y., Zhang, J., Xiong, Y., & Zhu, G. (2014). Data security and privacy in cloud computing. International Journal of Distributed Sensor Networks, 10(7), 190903. https://doi.org/10.1155/2014/190903
43.Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books. https://dx.doi.org/10.1007/bf02371446
44.Torraco, R. J. (2005). Writing integrative literature reviews: Guidelines and examples. Human Resource Development Review, 4(3), 356-367. https://doi.org/10.1177/1534484305278283
45.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
46.Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639. https://doi.org/10.1016/j.ejor.2017.02.023
47.Wacker, J. G. (1998). A definition of theory: Research guidelines for different theory-building research methods in operations management. Journal of Operations Management, 16(4), 361-385. https://doi.org/10.1016/S0272-6963(98)00019-9
48.Wade, M., & Hulland, J. (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1), 107-142. https://doi.org/10.2307/25148626
49.Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How 'big data' can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031
50.Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a literature review. MIS Quarterly, 26(2), xiii-xxiii. https://dx.doi.org/10.1.1.104.6570
51.Weinstock, C. B., & Goodenough, J. B. (2006). On system scalability (Technical Report CMU/SEI-2006-TN-012). Software Engineering Institute, Carnegie Mellon University.
52.Whetten, D. A. (1989). What constitutes a theoretical contribution? Academy of Management Review, 14(4), 490-495. https://doi.org/10.5465/amr.1989.4308371
53.Wixom, B. H., & Watson, H. J. (2010). The BI-based organization. International Journal of Business Intelligence Research, 1(1), 13-28. https://doi.org/10.4018/jbir.2010071702
54.Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: State-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7-18. https://doi.org/10.1007/s13174-010-0007-6


