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Abstract.

This paper puts forth a model that classifies Mung (Vigna mungo L.) leaves to check if they are fit as a fiddle or have
caught some disease, using a Machine Learning algorithm. The dataset was made in a proper controlled setup, where
each data item (image) shows just one leaf against a white background, collected from the South Gujarat side of India.
Support Vector Machine (SVM) models were trained for doing this work, focusing on spotting three types of Mung leaf
diseases, as well as when a leaf is perfectly healthy. The model nicely pulls out the detailed features related to different
diseases. Experiment results show that the SVM gets an identification accuracy of 86.4% on the Mung leaf image dataset.
If diseases are caught early, it can help our kisaans in increasing their yield. The main aim was to automatically identify
Mung leaf diseases using advanced machine learning techniques and image data.
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1. INTRODUCTION

Mungbean, or green gram as it's commonly known, stands out as a very nourishing legume crop. 1 Its high protein content
and how easily it digests make it a prized pulse. 2 India is the top producer of mungbean, placing it as the third most
significant pulse crop in the country, grown across roughly 34.50 lakh hectares and yielding a total of 15.91 lakh tonnes
(Vinod et al., 2018). To keep up with the world's needs, boosting the current average global yield is a must (Nair et al.,
2012). To help our farmers spot and stop Mung leaf diseases early on, automated methods are key. Machine Learning,
which is part of Artificial Intelligence, is all about making predictions using algorithms that get better on their own through
learning from data. 3 These algorithms create a model based on the data they're trained on, so they can then make
predictions on new data. 4 In this study, we used Support Vector Machines (SVM) to sort mung leaves into two groups:
healthy or diseased. Our model showed encouraging outcomes, and from what we know, it gives useful knowledge for
detecting diseases in Mung leaves. Furthermore, the non-destructive nature of image-based analysis offers a significant
advantage for continuous monitoring in agricultural fields. The development of such systems can contribute to reduced
pesticide usage and more sustainable farming practices. Considering the prevalence of smartphone usage in rural India,
deploying these models on mobile platforms could provide accessible and timely disease diagnosis for farmers.

2. Literature review

Mungbean yields face significant threats from several diseases, notably Cercospora Leaf Spot, Powdery Mildew, and the
particularly devastating Yellow Mosaic Virus (MYMYV), which can cause yield losses of 85-90% and affects not only
mungbean but also other important legumes across India and the subcontinent since its first report in 1940 (Nariani, 1960;
Verma and Malathi, 2003). Cercospora Leaf Spot (CLS), the most widespread fungal disease, can lead to annual yield
reductions of up to 58% (Lal et al., 2001), typically appearing a month or so after planting with characteristic reddish-
brown spots (Munjal et al., 1960). Powdery Mildew, caused by Erysiphe polygoni, can also significantly impact yields,
with losses ranging from 20-40% during reproductive stages (Fernandez and Shanmugasundaram, 1998) and potentially
reaching 55% in epidemic conditions (Poehlman, 1991). The distinct visual symptoms of each of these diseases on leaves
offer a pathway for classification using deep learning algorithms (Sladojevic et al., 2016; Huang et al., 2007; Price et al.,
1993; Ciresan et al., 2012). While early deep learning approaches for plant disease detection relied heavily on leaf images
(Fuentes et al., 2017; Ramcharan et al., 2017; Ferentinos et al., 2018; Godliver et al., 2018), their success hinges on the
availability of large, manually labeled datasets, which can be a significant bottleneck (Valle et al., 2017; Galdran et al.,
2017; Asperti etal., 2017; Wang et al., 2017), particularly in specialized domains like plant pathology. Data augmentation
techniques offer a solution to this limitation by generating new training samples through transformations (Simard et al.,
1992; Simard et al., 2003), although these may require specialized handling for tasks beyond simple classification (Abadi
etal., 2019; Bloice et al., 2017; Jung, 2017). Training deep Convolutional Neural Networks (CNNs) traditionally demands
extensive datasets (Lee et al., 2015), prompting researchers to explore transfer learning to leverage existing knowledge on
smaller datasets (Pan et al., 2010). Studies have shown promising results using transfer learning with various CNN
architectures (Srdjan et al., 2016), achieving high accuracy in classifying multiple plant diseases. Furthermore, research
comparing different CNN models has indicated the effectiveness of architectures like GoogleNet and AlexNet (Mohanty
etal., 2016), VGG16 (Wang et al., 2017), and DenseNets (Too et al., 2018) in plant disease identification, with DenseNets
showing strong performance with fewer parameters and less computational cost. Approaches incorporating transfer
learning (Selvaraj et al., 2019) and specialized techniques like regression and focus loss functions (Zhong et al., 2020)
have also demonstrated high accuracy in identifying specific plant diseases. Liu et al. (2017) also highlighted the benefits
of data augmentation in mitigating overfitting.

3. Proposed Method

In this study, we put forward the application of Support Vector Machine (SVM) algorithms for the purpose of detecting
diseases affecting mung leaves by leveraging machine learning. Support Vector Machines (SVM) are versatile models
suitable for both classification and regression problems. The fundamental principle of this algorithm involves the
identification of a separating line, or hyperplane when dealing with more complex data structures, that effectively
distinguishes between the various categories present in the dataset. The overall architecture of the proposed Mung Leaf
disease detection system is visually represented in Figure 1.

Volume-11 | Issue-01 | May 2025 94



| Dataset Division I
%' Image Leaf Image Pre-processing
Acquisition Dataset
Training Set
Crop field . | Test Set | Iramms |
Leaf Categories @
Q@OO0O

| Optimal parameters Optical Parameters

<=

using Grid search

00000 o ...
Leaf Image <: @ Iterations (:) C) . ®) O (D \eraa:n::l:n

Classification eleJe] 1€

Machine Learning Classifier (:\) Q ‘\,_> O .

S-fold cross-validation

Figure. 1 The Structure of Mung Leaf Disease Detection

4. Data Collection and Feature Engineering

4.1 Data Collection

The dataset, for the most part, was created in a proper controlled setting, where every image shows just one mung leaf
against a plain white background, so there's hardly any unwanted noise. Once we got the images, they were checked by
hand to remove any that were the same and to make sure they were put in the right category in the dataset. The final
dataset has 883 mung leaf images taken in this controlled way, and they are divided like this: Cercospora (224 images),
Healthy (211 images), Powdery Mildew (225 images), and Yellow Mosaic (223 images). Each image was resized to 256
by 256 pixels. The leaves in the dataset are put into one of four types: Healthy, Cercospora, Yellow Mosaic, and Powdery
Mildew.

The images of Mung leaves in 4 categories are shown in Figure 2.

(@) Yellow Mosaic Virus (b) Cercospora Leaf Spot  (c) Powdery Mildew (d) Healthy
Figure. 2 All Categories (Controlled Environment)

4.2 Preprocessing

For this research, an SVM model has been developed to spot diseases. Initially, each image is loaded into a three-
dimensional NumPy array and subsequently downsized to one-third of its initial dimensions specifically for training the
SVM. Within the field of computer vision, the Histogram of Oriented Gradients (HOG) method is utilized for identifying
objects. HOG functions as a feature descriptor by highlighting the form and arrangement of the subject within the image.
A histogram is computed for every localized section of the image, recording the directions of the gradients and thereby
supplying significant data for the classification task. By focusing on the shape and texture information encoded in the
HOG features, the SVM model aims to accurately distinguish between healthy and diseased mung leaves. The initial step
in our methodology involves reading the image data into a NumPy array, followed by a resizing operation to optimize the
input for the SVM training process.
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Figure. 3 A leaf image after applying HOG: (a) Cercospora Leaf Spot, (b) Healthy, (c) Powdery Mildew, (d)
Yellow Mosaic Virus

Prior to employing the Histogram of Oriented Gradients (HOG) technique, each image undergoes a conversion to its
grayscale equivalent. The corresponding disease labels are then transformed into integer values, specifically ranging from
1 to 4. Figure 3 provides a visual illustration of a converted grayscale leaf image alongside its computed HOG
representation. Given that we are utilizing the SVM implementation from the Sklearn library, the application of one-hot
encoding to the training labels is unnecessary. Instead, these labels are directly associated with integer values spanning
from 1 to 4.

5. Algorithm Training
Support Vector Machines (SVMs) are recognized for their capacity to deliver superior accuracy compared to alternative
machine learning models, including logistic regression. To effectively manage input spaces that exhibit non-linear
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characteristics, SVMs utilize a kernel trick. This technique operates by transforming the data into a higher-dimensional
space, thereby facilitating the identification of a hyperplane capable of segregating the distinct classes. The
sklearn.svm.SVC class in Python's scikit-learn library provides a robust Support Vector Classifier (SVC). In this particular
study, an SVC was implemented employing a polynomial kernel and a defined regularization parameter (C), in
conjunction with a "One-vs-One" strategy. This "One-vs-One" approach functions as a practical heuristic method wherein
a binary classification task is executed for every unique pair of classes within the multiclass problem. Each individual
binary classifier generates a prediction for a class label, and the label that receives the majority of predictions is ultimately
chosen as the final classification output. Following the training phase, the SVM model achieved a test accuracy of 86.9%;
however, it was observed to have overfitted the training dataset. Figure 4 provides a visual representation of the confusion
matrix, illustrating the classification performance across the four Mung leaf categories, which encompass three diseased
states and one healthy state. Complementarily, Table 1 presents a comprehensive classification report detailing the
precision, recall, F1-score, and support for each of these categories within the controlled experimental environment using
the SVM model. The "One-vs-One" strategy inherently increases the computational cost during training due to the creation
of multiple binary classifiers but can often lead to improved classification accuracy in multiclass scenarios. Further
optimization of the regularization parameter (C) and exploration of different kernel functions could potentially mitigate
the observed overfitting and enhance the model's generalization capability on unseen data. The confusion matrix in Figure
4 provides a detailed breakdown of the model's performance, highlighting specific areas of confusion between different
disease categories and the healthy class.

-0

b 1 2 3
Figure. 4 Confusion Matrix (Controlled); 0-Cercospora, 1-Healthy, 2-Powdery Mildew, 3-Yellow Mosaic

precision | recall fl-score support
0 0.82 0.89 0.85 56
1 0.86 0.94 0.90 53
2 0.93 0.88 0.90 57
3 0.88 0.77 0.82 56
accuracy 0.87 222
macro avg 0.87 0.87 0.87 222
weighted avg | 0.87 0.87 0.87 222
0 — Cercospora 1 — Healthy
2 — Powdery Mildew 3 — Yellow Mosaic Virus

Table 1 Classification Report

To tackle the problem of overfitting, a range of values for the regularization parameter, along with other hyperparameters,
were evaluated. The Grid Search technique was employed to pinpoint the hyperparameter settings that yield the highest
accuracy while effectively avoiding overfitting. Several hyperparameters, namely C, Gamma, Kernel, Degree, and
Strategy, were investigated across a defined set of potential values, utilizing a 5-fold cross-validation approach within the
Grid Search framework. Following the implementation of the optimal hyperparameter values identified through the grid
search process, the training accuracy of the model reached a perfect 100%. However, this adjustment resulted in a slight
decrease in the test accuracy, which settled at 86.4%.
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Conclusion

Within the supervised confines of the controlled environment, the relevant features were effectively extracted from the
mung leaf images and subsequently classified using the Support Vector Machine (SVM) model, culminating in a test
accuracy of 86.4%. The carefully managed setting, characterized by distinct, noise-absent images, facilitated precise
feature detection, thereby enabling the model to reliably differentiate between healthy and afflicted foliage.
Notwithstanding the elevated training accuracy achieved, the model exhibited a degree of overfitting, evidenced by the
marginal reduction in test accuracy. This observation implies that while the model demonstrates strong performance on
the data it was trained on, further refinement and adjustments are warranted to enhance its capacity to generalize to novel,
previously unseen data.
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