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Abstract:
In this paper, a model based on effect of toxicant on a biological species [1, chap. 2] is analyzed for the existence and 
nature of hopf-bifurcation. The biological population is logistically growing in its own environment and toxicant is being 
emitted by the population itself. The hopf-bifurcation analysis of model shows that when the emission rate of toxicant by 
the biological population increases in the environment, the density level of biological population  decreases and after 
crossing a critical value of emission rate, the density of biological population starts oscillating and never settle down to 
its equilibrium level. The hopf-bifurcation analysis of model increases the validity of model. The dynamic behavior of the 
model for the emission rate of toxicant is described by providing numerical simulation. 
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I. INTRODUCTION 
In the recent decades, use of mathematical models is increasing in various fields such as ecology, epidemiology, 
ecotoxicology, etc. Ecotoxicology is a field in which we study the effect of toxicants on biological species. Many studies 
have been carried out in the field of ecotoxicology using mathematical models [1, 2, 3, 5, 7, 8, 11 and 12]. Agrawal [1, 
chap. 2] proposed a mathematical model to study the effect of a toxicant on a biological species in which toxicant is 
discharged by the biological species itself in its own environment and decreases the growth rate of biological species as 
well as carrying capacity of biological species in the environment. It is a well-defined model. Local stability analysis and 
global stability analysis of the model are analyzed using Routh-hurwitz criterion and Lyapunov’s function which 
characterizes the stable behavior of mathematical model very well. But a very important part of analysis (i.e. bifurcation 
analysis) which describe the unstable behavior of mathematical model and increase the validity of the model, is left there 
for further study.  

II. Model description 
The model for the effect of toxicant on a logistically growing biological population by Agrawal [1, chap. 2] is given as 
follows: 

Here, (�) is the density of the biological population, �(�) is the concentration of the toxicant in the environment and �(�)
is the uptake concentration of toxicant by the population �(�). All the parameters defined in model are positive. �0 is the 
growth rate of biological species in a toxic-free environment. � is the emission rate of toxicant in its own environment by 
the biological population. �0 is the natural washout rate coefficient of (�), is the depletion rate coefficient of �(�) due to 
uptake by population, �1 is the natural washout rate coefficient of �(�). The constant is the depletion rate coefficient of 
(�) due to decay of some members of �(�) and a fraction re-enter into the environment. The constant � ≥ 0 is the 
proportionality constant determining the measure of initial toxicant concentration in the population at � = 0. The function 
(�) represents the growth rate of biological depending on the uptake of toxicant by the biological population. (�) is the
carrying capacity function for the biological population depend on the emission of toxicant of biological population �(�). 
(�) decreases when the concentration level of toxicant �(�) increases in the environment and vice-versa. The model (2.1) 
has two nonnegative equilibrium points, �1(0, 0, 0) and 

. All the positive solutions of model must lie in the region Ω, (see Agrawal [1, chap. 2]) where, 

, here � = min (�0, �1)

III. Hopf-bifurcation Analysis 
Hopf-bifurcation analysis [6, 9 and 10] is a very important part to describe the qualitative behavior of mathematical model. 
It is well known, a model system based on nonlinear ordinary differential has a hopf-bifurcation, if variational matrix 
corresponding to the equilibrium point has two purely imaginary eigenvalues and other eigenvalues have negative real 
parts. 
In this section, we analyzed model (2.1) for the existence of Hopf-bifurcation corresponding to the equilibrium point �2

by taking (i.e. emission rate of toxicant by the bioloigical population) as a bifurcation parameter. We linearize the model 
(2.1) about equilibrium point’s �2 by using the following transformation: 

Moreover,
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Here, �� is linear and B is nonlinear part of model (2.1). Matrix is similar to the variational matrix �2 corresponding 
to the equilibrium point �2 (see [1, chap. 2]). The characteristic equation of matrix can be written as: 
(�) = �3 + �1�2 + �2� + �3 (3.2)

Where

�1 = −(�11 + �22 + �33)

�2 = �11�22 + �11�33 + �22�33 − �12�21 − �13�31 − �23�32

�3 = �11�23�32 + �22�13�31 + �33�12�21 − �11�22�33 − �12�23�31 − �13�21�32

The characteristic equation (3.2) of model (2.1) is of order , so there are three eigenvalues of matrix and one 
eigenvalue of matrix must be real (i.e. �1,2 = �1 ± ��1 and �3 = �3). So, the model (2.1) undergoes a hopf-bifurcation 
corresponding to the equilibrium point �2, if eq.(3.2) have two purely imaginary complex conjugate eigenvalues and a 

negative eigenvalue (i.e. .  
Now, according to the Liu’s criterion [10], model undergoes a Hopf-bifurcation at � = �∗ > 0, if the following conditions 
hold: 

• ��(�∗) > 0,     � = 1,3
• �1(�∗)�2(�∗) − �3(�∗) = 0
• At � = �∗, the derivative of the real part of complex conjugate eigenvalue with respect to the parameter is not 

equal to zero. (i.e. 

Now, we will verify the third condition of the existence of hop-bifurcation by putting 

� = � + �� in eq. (3.2), we get 

(� + ��) 3 + �1 (� + ��)2 + �2(� + ��) + �3 = 0                                                            (3.3)

Separating the real and imaginary parts, we get 

�3 − 3��2 + �1�2 − �1�2 + �2� + �3 = 0                               (3.4)

−�3 + 3�2� + 2�1�� + �2� = 0                                                                                        (3.5)
Eliminating between eq. (3.4) and eq. (3.5), we have 

−8�3 − 8�1�2 − 2�2� − 2�1�2 − �1�2 + �3 = 0                                                        (3.6)

Differentiating eq. (3.6) with respect to at �∗, 

So, we can state the following theorem. 

Volume-7 | Issue-3 | Sep, 2021 32



Theorem 1 The model (2.1) undergoes a Hopf-bifurcation from the equilibrium point �2, if passes through the 
criticalvalue  �∗ > 0 such that: 

1.

2.

3.

Now, it is important to know the nature of bifurcating periodic solutions arising through Hopf-bifurcation. We have 
analyzed the stability and direction of the bifurcating periodic solutions by following the procedure given by Hassard et 
al. (see [6]). At the Hopfbifurcation point, eq. (3.2) have a pair of complex conjugate roots of eq.(3.2) with zero real parts 
and a negative real root, so we can assume the roots such as: 

�1,2 = ±��, �3 = −�

Where, 

Now, to determine the direction of Hopf-bifurcation and stability of bifurcating periodic solution, we transform the system 
(2.1) in normal form.  Let � = �� then the matrix form (3.1) of model becomes 

� ̇ = �� + �, � = ���. (�1, �2, �3)                                                                              (3.8)

Where

Here � is a transformed matrix defined as 

Where, 

�11 = �12�23�31 + �13�21�32 − �13�31�22 − �12�21�33

�12 = (�12�21 + �13�31) 

and  

where 

�1(�1, �2, �3) = �′(�∗). (�11�1 + �12�2 + �13�3)(�31�1 + �32�2 + �33�3)

Volume-7 | Issue-3 | Sep, 2021 33



Hence, eq. (3.8) is the normal form of eq. (2.1). For evaluating the direction of bifurcating solution, we evaluate following 
quantities at � = �∗ and (�1, �2, �3) = (0,0,0). 

,

To examine the nature of hopf-bifurcation and periodic solutions, we calculate the following quantities: 

After calculating above, we can state the following results: 

Theorem 2 Model (2.1) shows a Hopf-bifurcation corresponding to the parameter as follows: 
1. If �2 > 0 (or �2 < 0), the Hopf-bifurcation is supercritical (or subcritical) and the bifurcating periodic solutions exist 

for � > �∗ (� < �∗),
2. If �2 < 0 (or �2 > 0), the bifurcating periodic solutions are stable (or unstable), 
3. If �2 > 0 (or �2 < 0), the period of bifurcating periodic solutions increases (or decreases). 

IV. Numerical simulation

In the previous section, we have found conditions for existence of hopf-bifurcation and its nature. To numerically clarify 
that model (2.1) has a supercritical bifurcation, we assume functions (�) and �(�) as follows: 

As, we assumed functions �(�) and �(�) in (4.1) and define the value of parameters in (4.2), we increase the value of 
parameter from 0.0007 to �∗ = 0.38495, we obtained that all the eigenvalues of variational matrix have negative real 
parts (�1, �2, �3 < 0) for each value of in this range but at �∗, we get  purely imaginary complex conjugate (�. �. �1 = �2 

= 0 and �1 = −�2 ≠ 0) and a negative real eigenvalue (�. �. �3 < 0) of the variational matrix, (see Figs.1 & 2). It means model 
(2.1) undergoes a hopf-bifurcation at � = 0.38495. 
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Figure 1: Real parts of eigenvalues of variational matrix respect to the parameter 

Figure 2: Imaginary parts of eigenvalues of variational matrix respect to the parameter 

In Fig.3, we have shown the density of biological population for different value of parameter with respect to time. This 
figure shows that when the value parameter � < 0.38495, the density of biological population initially oscillates and then 
settle down to its equilibrium level. But when the value of parameter � > 0.38495, the density of biological population 
oscillates and does not settle down to its equilibrium level. Here, it is obvious that there exist a hopf-bifurcation in the 
model (2.1) for parameter at 0.38495 and other value of parameters same as (4.2). Now, to find the nature of hopf-
bifurcation we calculated the quantities �2 = 1.1630 ∗ 10−5 > 0 and �2 = −6.5744 ∗ 10−7 < 0. According to the 

Theorem:2, there exist a supercritical hopf-bifurcation with stable bifurcating periodic solution. In Fig.4, we show the 
dynamic behavior of density of biological population corresponding to . Here, we have shown that stable density 
level of biological population decreases when value of parameter increase upto � = 0.38459. At the value of � = 0.38459 
system undergoes a supercritical hopf-bifurcation and after that we get an unstable equilibrium with stable periodic 
oscillations. 
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Figure 3: Variation of parameter with respect to time.

Figure 4: Dynamic behavior of density of biological population respect to the parameter .

V. Conclusion 
In this paper, we have analyzed a mathematical model based on effect of toxicant on a logistically growing biological 
population [1, chap. 2] for the existence and nature of hopfbifurcation. The hopf-bifurcation analysis of model (2.1) shows 
that parameter (i.e. the emission rate of toxicant by biological species itself) has a critical value �∗ such that model (2.1) 

has stable solutions at the equilibrium point for each value of � < �∗ and model undergoes a supercritical 
hopf-bifurcation at �∗, after that we found unstable solution for each value of � > �∗. The hopf-bifurcation analysis of 
model show that for higher emission of toxicant in the environment by the biological species, density of biological 
population become unstable and never settles to its equilibrium level. 
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